0=-4.9x^2+13.1x+174.2

Simple and best practice solution for 0=-4.9x^2+13.1x+174.2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-4.9x^2+13.1x+174.2 equation:



0=-4.9x^2+13.1x+174.2
We move all terms to the left:
0-(-4.9x^2+13.1x+174.2)=0
We add all the numbers together, and all the variables
-(-4.9x^2+13.1x+174.2)=0
We get rid of parentheses
4.9x^2-13.1x-174.2=0
a = 4.9; b = -13.1; c = -174.2;
Δ = b2-4ac
Δ = -13.12-4·4.9·(-174.2)
Δ = 3585.93
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13.1)-\sqrt{3585.93}}{2*4.9}=\frac{13.1-\sqrt{3585.93}}{9.8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13.1)+\sqrt{3585.93}}{2*4.9}=\frac{13.1+\sqrt{3585.93}}{9.8} $

See similar equations:

| 10c+36-c=12 | | x^2+4x-392=0 | | 18-5g=48 | | -4=y–115 | | 42=3+y | | (Q-9)x5=50 | | n2-4=77 | | 41-2p=-43 | | 6x+23=13-5 | | 1800=3xx100 | | -42=r/8-44 | | -2b–1=5 | | m^2+14m+2=0 | | 3z/8=-13 | | -27=15+6u | | 5x^2-50-120=0 | | 8y+3y-21=4y+8-2 | | (7x+16)+90+(3x+14)=180 | | Y=25x-5x² | | 9x-16=6x+3 | | 2=2+40t-16t^2 | | 1800=3xx200 | | x-16=97 | | -9x+13=-41 | | -4=-2z–8 | | 6d-3=63 | | 8(q+9)−10=86 | | 13x-20=123 | | x2=29 | | 68=7x-12 | | 23=-3x+29 | | 15/35=3/y |

Equations solver categories